黎曼积分

黎曼积分

图:silhouette of mountains and spectacular view from the mountain top

Guderian出品


设$f(p)$是几何形体上的点函数,黎曼积分$\int_\Omega f(p) \mathrm{d} \Omega=\lim_{\lambda \to0} \sum_{i=1}^{n}f(p_i)\Delta\Omega_i$ 具体分为四类:

二重积分

x-型域

$\iint_\sigma f(x,y)\mathrm{d}\sigma=\iint_\sigma f(x,y)\mathrm{d}x\mathrm{d}y=\int_a^b\mathrm{d}x\int_{y_1(x)}^{y_2(x)} f(x,y)\mathrm{d}y$

y-型域

$\iint_\sigma f(x,y)\mathrm{d}\sigma=\iint_\sigma f(x,y)\mathrm{d}x\mathrm{d}y=\int_c^d\mathrm{d}y\int_{x_1(x)}^{x_2(x)} f(x,y)\mathrm{d}x$

极坐标

$\iint_\sigma f(x,y)\mathrm{d}\sigma=\iint f(r,\theta)r\mathrm{d}r\mathrm{d}\theta=\int_\alpha^\beta\mathrm{d}\theta\int_{r_1(\theta)}^{r_2(\theta)}f(r,\theta)r\mathrm{d}r$

三重积分

投影法

$\iiint_V f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\iint_{\sigma_{xy}}\mathrm{d}x\mathrm{d}y\int_{z_1(x,y)}^{z_2(x,y)}f(x,y,z)\mathrm{d}z$

截面法

$\iiint_V f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_a^b\mathrm{d}z\iint_{\sigma_z}f(x,y,z)\mathrm{d}x\mathrm{d}y$

柱坐标系

变换关系: $x=r\cos\theta$, $y=r\sin\theta$
体积微元: $\mathrm{d}V=r\mathrm{d}r\mathrm{d}\theta\mathrm{d}z$
$\iiint_V f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_\alpha^\beta\mathrm{d}\theta\int_{r_1(\theta)}^{r_2(\theta)}r\mathrm{d}r\int_{z_1(r,\theta)}^{z_2(r,\theta)}f(r\cos\theta,r\sin \theta,z) \mathrm{d}z$

球坐标系

变换关系: $x=\rho\sin\phi\cos\theta$, $y=\rho\sin\phi\sin\theta$, $z=\rho\cos\theta$
体积微元: $\mathrm{d}V=\rho^2\sin\phi\mathrm{d}\rho\mathrm{d}\phi\mathrm{d}\theta$
$\iiint_V f(x,y,z)\mathrm{d}x\mathrm{d}y\mathrm{d}z=\int_\alpha^\beta\mathrm{d}\theta\int_{\phi_1(\theta)}^{\phi_2(\theta)}\sin\phi\mathrm{d}\phi\int_{\rho_1(\theta,\phi)}^{\phi_2{\theta,\phi}}f(\rho\sin\phi\cos\theta,\rho\sin\phi\sin\theta,\rho\cos\theta)\rho^2\mathrm{d}\rho$

第一型曲线积分

$\int_lf(x,y,z)\mathrm{d}s=\int_\alpha^\beta f(x(t),y(t),z(t))\sqrt{x'^2(t)+y'^2(t)+z'^2(t)}\mathrm{d}t$

第一型曲面积分

$\iint_Sf(x,y,z)\mathrm{d}S=\iint_{\sigma_{xy}}f(x,y,z(x,y))\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}\mathrm{d}\sigma$

黎曼积分的应用

曲面面积

等价于积分函数为$1$的第一型曲面积分

$S=\iint_S\mathrm{d}S=\iint_{\sigma_{xy}}\sqrt{1+(\frac{\partial z}{\partial x})^2+(\frac{\partial z}{\partial y})^2}\mathrm{d}\sigma$

曲顶柱体体积

等价于积分函数为$1$的三重积分

$V=\iiint_V\mathrm{d}V=\iint_{\sigma_{xy}}z(x,y)\mathrm{d}\sigma$

质心

等价于积分函数$\mu(p)$为质量密度(及其与$x,y,z$乘积)的三重积分

$\bar{x}=\frac{\int_\Omega\mu(p)x\mathrm{d}\Omega}{\int_\Omega\mu(p)\mathrm{d}\Omega}$, $\bar{y}=\frac{\int_\Omega\mu(p)y\mathrm{d}\Omega}{\int_\Omega\mu(p)\mathrm{d}\Omega}$, $\bar{z}=\frac{\int_\Omega\mu(p)z\mathrm{d}\Omega}{\int_\Omega\mu(p)\mathrm{d}\Omega}$

转动惯量

仅针对坐标轴,等价于积分函数为质量密度$\mu(p)$与另外两个变量平方和的乘积的三重积分

$I_x=\int_\Omega\mu(p)(y^2+z^2)\mathrm{d}\Omega$,$I_y=\int_\Omega\mu(p)(x^2+z^2)\mathrm{d}\Omega$,$I_z=\int_\Omega\mu(p)(x^2+y^2)\mathrm{d}\Omega$
Presented by Guderian

本文标题:黎曼积分

文章作者:G-SS-Hacker

发布时间:2020年04月24日 - 17:24:50

最后更新:2020年05月04日 - 15:56:20

原始链接:https://G-SS-Hacker.github.io/黎曼积分/

许可协议: 署名-非商业性使用-禁止演绎 4.0 国际 转载请保留原文链接及作者。